Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 274: 125990, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552477

RESUMO

As a product of nonenzymatic glycation, glycated albumin (GA) is a promising serum marker for the short-term glycemic monitoring in patients with diabetes. On the basis of the boronate crosslinking (BCL)-enabled direct labeling of ferrocene (Fc) tags to the nonenzymatically glycated (NEG) sites, we report herein a novel aptamer-based ratiometric electrochemical (apt-REC) platform for the point-of-care (POC) assay of GA. This apt-REC platform is based on the recognition of GA proteins by the methylene blue (MB)-modified aptamer receptors and the labeling of the Fc tags to the NEG sites via the BCL. Using MB as the reference tag and Fc as the quantification tag, the ratio of the oxidation currents (i.e., IFc/IMB) can serve as the yardstick for the ratiometric assay of GA. Due to the presence of tens of the NEG sites, each GA protein can be labeled with tens of quantification tags, permitting the amplified assay in a simple, time-saving, and low-cost manner. The ratiometric signal exhibited a good linear response over the range from 0.1 to 100 µg/mL, with a detection limit of 45.5 ng/mL. In addition to the superior reproducibility and robustness, this apt-REC platform is highly selective (capable of discriminating GA against human serum albumin (HSA)) and applicable to GA assay in serum samples. Due to its low cost, high reproducibility and robustness, simple operation, and high sensitivity and selectivity, this apt-REC platform holds great promise in the POC assay of GA for diabetes management.

2.
J Ethnopharmacol ; 328: 117985, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417600

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Of all primary liver cancer cases, hepatocellular carcinoma (HCC) accounts for about 90%. Most patients with HCC receive a diagnosis in the medium-to-late stages or with chronic liver disease, have lost the opportunity for radical treatment, such as surgical resection, and their 5-year survival rate is low. Qizhu Anticancer Prescription (QZACP) is an empirical formula composed of traditional Chinese herbs that can clinically relieve HCC symptoms, inhibit the progression of HCC, reduce recurrence rate, and prolong survival; however, its exact mode of action remains unknown. AIM OF THE STUDY: This study's purpose was to investigate the mode of action of QZACP in the prevention and treatment of HCC. MATERIALS AND METHODS: Initially, drug components in the QZACP decoction were analyzed using high-resolution mass spectrometry. A subcutaneous tumor xenograft model in nude mice was constructed to further analyze the active components of QZACP that had entered tumor tissues through oral administration. Potential targets of QZACP in the prevention and treatment of HCC were identified and then confirmed in vivo via network pharmacology and molecular docking. In addition, regulatory effects of QZACP on HCC cell proliferation and the cell cycle were detected using a CCK-8 assay and flow cytometry. RESULTS: High-resolution mass spectrometry revealed that the QZACP decoction contained deacetyl asperulosidic acid methyl ester (DAAME), paeoniflorin, calycosin-7-glucoside, liquiritin, glycyrrhizic acid, astragaloside IV, saikosaponin A, curdione, and atractylenolide II. In nude mice, QZACP could effectively inhibit the growth of subcutaneous tumors, where DAAME, paeoniflorin, liquiritin, and glycyrrhizic acid could enter liver cancer tissues after oral administration. Among these, DAAME was the most highly expressed in HCC tissues and may be an important active component of QZACP for inhibiting HCC. Utilizing network pharmacology, the targets of action of these four drug components were identified. After verification using western blotting, STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2 were identified as targets of QZACP inhibition in HCC. In vitro experiments revealed that QZACP inhibited the proliferation of HCC cells while inducing G0/G1 phase cell cycle arrest. In vivo experiments demonstrated that DAAME significantly inhibited HCC growth. After intersection of the 24 DAAME targets predicted using network pharmacology with the 435 HCC disease targets, only CA9 was identified as a DAAME-HCC crossover target. Molecular docking results revealed that the binding site of DAAME and CA9 had good stereo-complementarity with a docking score of -8.1 kcal/mol. Western blotting and immunohistochemical results also confirmed that DAAME significantly decreased CA9 protein expression in HCC. CONCLUSIONS: QZACP inhibits HCC by reducing the expression of STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2. DAAME may be an important active component of QZACP for the prevention and treatment of HCC, inhibiting it by targeting the expression of CA9.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Glucosídeos , Neoplasias Hepáticas , Monoterpenos , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Metaloproteinase 1 da Matriz , Metaloproteinase 7 da Matriz , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Heliyon ; 9(11): e22089, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053871

RESUMO

Background: Qizhu Anti-Cancer Recipe (QACR) is a traditional Chinese medicine widely used in treating several liver diseases. However, its function and the relevant mechanism underlying its effect in treating hepatocellular carcinoma (HCC) remain unknown. The aim of this study was to explore the effect of QACR in HCC, which are expected to be a potential therapeutic scheme for HCC. Materials and methods: The chemical compositions of QACR were determined by liquid chromatography/quadrupole time-of-fight mass spectrometry (LC-QTOF-MS). The anoikis-resistant HCC cell proliferation and angiopoiesis were detected using the cell counting kit 8 (CCK8) assay, trypan blue, calcein AM/EthD-1, flow cytometer, Western blot, and tube formation assays. An orthotopic xenograft mouse model was established to evaluate the in vivo effects of the QACR. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3, caspase-8, caspase-9, PARP-1, DFF40, phospho-c-Jun NH2-terminal kinase (p-JNK), and JNK was assessed using Western blot and immunohistochemical analysis. Results: QACR reduced the growth and tube formation of anoikis-resistant HCC cells and enhanced cell apoptosis in vitro. In the orthotopic xenograft mouse models, QACR suppressed the tumorigenesis of HCC in vivo. Mechanistically, QACR modulated the JNK pathway. The JNK inhibitor (SP600125) reverses the inhibitory effects of QACR on anoikis-resistant HCC cell proliferation and angiopoiesis. Conclusion: Our study suggests that QACR suppresses the proliferation and angiopoiesis of anoikis-resistant HCC cells by activating the JNK pathway. Therefore, QACR is a promising new therapeutic strategy for treating hepatocellular carcinoma.

4.
Anal Chem ; 95(37): 14094-14100, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37672684

RESUMO

The rapid quantification of therapeutic monoclonal antibodies (mAbs) is of great significance to their pharmacokinetics/pharmacodynamics (PK/PD) research and the personalized medication for disease treatment. Taking advantage of the direct decoration of tens of redox tags to the target of interest, we illustrate herein an amplification-free ratiometric electrochemical aptasensor for the point-of-care (POC) detection of trace amounts of therapeutic mAbs. The POC detection of therapeutic mAbs involved the use of the methylene blue (MB)-conjugated aptamer as the affinity element and the decoration of therapeutic mAbs with ferrocene (Fc) tags via the boronate crosslinking, in which the MB-derived peak current was used as the reference signal, and the peak current of the Fc tag was used as the output signal. As each therapeutic mAb carries tens of diol sites for the site-specific decoration of the Fc output tags, the boronate crosslinking enabled the amplification-free detection, which is cost-effective and quite simple in operation. In the presence of bevacizumab (BevMab) as the target, the resulting ratiometric signal (i.e., the IFc/IMB value) exhibited a good linear response over the range of 0.025-2.5 µg/mL, and the limit of detection (LOD) of the electrochemical aptasensor was 6.5 ng/mL. Results indicated that the aptamer-based affinity recognition endowed the detection of therapeutic mAbs with high selectivity, while the ratiometric readout exhibited satisfactory reproducibility and robustness. Moreover, the ratiometric electrochemical aptasensor is applicable to the detection of therapeutic mAbs in serum samples. Taking together, the amplification-free ratiometric electrochemical aptasensor holds great promise in the POC detection of therapeutic mAbs.


Assuntos
Anticorpos Monoclonais , Tetranitrato de Pentaeritritol , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Bevacizumab , Azul de Metileno , Oligonucleotídeos
5.
Sci Rep ; 13(1): 15735, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735184

RESUMO

Peripheral blood mononuclear cell (PBMC) genes reflect the host immune status and could be suitable for evaluating the prognosis of patients with hepatocellular carcinoma (HCC), for which a reliable biomarker is unavailable and the host immune responses to cancer cells. This study aimed to investigate prognostically relevant genes in HCC PBMCs and assessed whether their expression represents tumor immune infiltration. Gene expression in PBMCs from patients with advanced or terminal HCC who had survived or died was examined. Correlations among FAT atypical cadherin 4 (FAT4) expression, cancer immune characteristics, and infiltrated immune cell gene marker sets were analyzed. FAT4 expression was lower in the PBMCs of patients with advanced or terminal HCC who had died than that in patients who survived. Kaplan-Meier analysis indicated that FAT4 downregulation was associated with a relatively poor prognosis while overexpression was positively correlated with immune cell infiltration, several immune cell markers, and immune checkpoint expression. Hsa-miR-93-5p represented the most probable upstream microRNA of FAT4. Thus, upregulated FAT4 in PBMCs and HCC tissues might indicate a favorable prognosis and increased immune cell infiltration, while miRNA-93-5p could be a modulator of FAT4 expression. Collectively, these findings suggest novel immunotherapy targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Leucócitos Mononucleares , Neoplasias Hepáticas/genética , Prognóstico , Morte , Caderinas , Proteínas Supressoras de Tumor , MicroRNAs/genética
6.
BMC Gastroenterol ; 23(1): 234, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438735

RESUMO

BACKGROUND:  Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and is characterized by insidious onset, rapid progression, and poor prognosis. Immunotherapy is a first-line treatment for advanced HCC. The identification of immune-related prognostic markers may be an effective strategy to predict and improve clinical response rate of immunotherapy. METHODS:  The DESeq2, edgeR, and limma R packages were used to compare the transcriptomes of HCC with different prognoses. Cancer-related databases such as UALCAN, TNMplot, GEPIA, muttarget and Human Protein Atlas (HPA), and the Kaplan-Meier Plotter platform were used to analyze the relationship between CLDN18 and the clinical characteristics, as well as prognosis of HCC. The co-expressed genes of CLDN18 were obtained from LinkedOmics platform, and GO functional enrichment and KEGG pathway analysis were performed. The CIBERSORT, TIMER, Timer 2.0 and TISIDB algorithms were used to analyze immune infiltration. RESULTS:  CLDN18 was differentially expressed in HCC patients with different prognoses, and its expression level in PBMC was positively correlated with the stage of BCLC. In addition, CLDN18 was significantly overexpressed in HCC tumor tissues compared to adjacent non-tumor tissues, which was consistent with PBMC sequencing results and immunohistochemical data from human protein profiles. CLDN18 was also positively correlated with HCC staging and grading, and high expression levels of CLDN18 predicted shorter overall survival. Functional annotation of CLDN18 in HCC revealed enrichment of the cellular senescence and protein activation cascade, along with biological processes such as cell cycle, inflammatory response, and cellular ketone metabolism. In addition, CLDN18 was also associated with tumor infiltrating immune cells, suppressive immune cell markers, T lymphocyte depletion and activation of HCC, and low expression of CLDN18 was associated with higher CD8 + T cell infiltration and better survival rates. CONCLUSIONS: CLDN18 is a potential prognostic marker and immunotherapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Leucócitos Mononucleares , Neoplasias Hepáticas/genética , Algoritmos , Claudinas
7.
Cell Death Discov ; 9(1): 189, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353487

RESUMO

Acute liver injury (ALI) is an acute inflammatory liver disease with a high mortality rate. Alternatively, activated macrophages (AAMs) have been linked to the inflammation and recovery of ALI. However, the mechanism underlying AAM death in ALI has not been studied sufficiently. We used liensinine (Lie) as a drug of choice after screening a library of small-molecule monomers with 1488 compounds from traditional Chinese remedies. In ALI, we evaluated the potential therapeutic effects and underlying mechanisms of action of the drug in ALI and found that it effectively inhibited RSL3-induced ferroptosis in AAM. Lie significantly reduced lipid peroxidation in RSL3-generated AAM. It also improved the survival rate of LPS/D-GalN-treated mice, reduced serum transaminase activity, suppressed inflammatory factor production, and may have lowered AAM ferroptosis in ALI. Lie also inhibited ferritinophagy and blocked Fe2+ synthesis. Following combined treatment with RSL3 and Lie, super-resolution microscopy revealed a close correlation between ferritin and LC3-positive vesicles in the AAM. The co-localization of ferritin and LC3 with LAMP1 was significantly reduced. These findings suggest that Lie may ameliorate ALI by inhibiting ferritinophagy and enhancing AMM resistance to ferroptosis by inhibiting autophagosome-lysosome fusion. Therefore, Lie may be used as a potential therapeutic agent for patients with ALI.

8.
Anal Chem ; 95(12): 5463-5469, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921250

RESUMO

As the entering of bacterial endotoxin into blood can cause various life-threatening pathological conditions, the screening and detection of low-abundance endotoxin are of great importance to human health. Taking advantage of signal amplification by target-assisted electrochemically mediated atom transfer radical polymerization (teATRP), we illustrate herein a simple and cost-effective electrochemical aptasensor capable of detecting endotoxin with high sensitivity and selectivity. Specifically, the aptamer receptor was employed for the selective capture of endotoxin, of which the glycan chain was then decorated with ATRP initiators via covalent coupling between the diol sites and phenylboronic acid (PBA) group, followed by the recruitment of ferrocene signal reporters via the grafting of polymer chains through potentiostatic eATRP under ambient temperature. As the glycan chain of endotoxin can be decorated with hundreds of ATRP initiators while the further grafting of polymer chains through eATRP can recruit hundreds to thousands of signal reporters to each initiator-decorated site, the teATRP-based strategy allows for the dual amplification of the detection signal. This dually amplified electrochemical aptasensor has the ability to sensitively and selectively detect endotoxin at a concentration as low as 1.2 fg/mL, and its practical applicability has been further demonstrated using human serum samples. Owing to the simplicity, high efficiency, biocompatibility, and inexpensiveness of the teATRP-based amplification strategy, this electrochemical aptasensor holds great application potential in the sensitive and selective detection of low-abundance endotoxin and many other glycan chain-containing bio-targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Limite de Detecção , Endotoxinas , Polímeros , Oligonucleotídeos , Técnicas Eletroquímicas
9.
Int J Oncol ; 62(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36825585

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy. Although considerable efforts have been made in recent years regarding treatments, effective therapeutic drugs for HCC remain insufficient. In the present study, polyphyllin VI was identified as a potential therapeutic drug for HCC by screening natural herbal compounds. The therapeutic effects of polyphyllin VI were assessed using Cell Counting Kit­8, lactate dehydrogenase release and colony formation assays. The occurrence of ferroptosis was determined by assessing lipid peroxidation by reactive oxygen species, malondialdehyde levels, intracellular ferrous iron levels, and the mRNA and protein levels of glutathione peroxidase 4 (GPX4). The migratory and invasive abilities of HCC cells were examined using wound healing and Transwell assays. The results revealed that polyphyllin VI inhibited the proliferation, invasion and metastasis of HCC cells (HCCLM3 and Huh7 cells) by inducing ferroptosis. In addition, through a network pharmacology­based approach and molecular docking analyses, it was found that polyphyllin VI may target the signal transducer and activator of transcription 3 (STAT3). HCC cells were treated with polyphyllin VI or a STAT3 inhibitor (Stattic), both of which exerted similar inhibitory effects on protein expression. Furthermore, immunofluorescence staining revealed that polyphyllin VI significantly inhibited the nuclear translocation of p­STAT3 in HCC cells. Mechanistically, by the overexpression of STAT3, it was confirmed that STAT3 binds to GPX4 and promotes its protein expression and transcription, whereas polyphyllin VI induces ferroptosis by inhibiting the STAT3/GPX4 axis. Subsequently, in vivo experiments revealed that polyphyllin VI inhibited the growth of subcutaneously transplanted tumors. On the whole, findings of the present study suggest that polyphyllin VI inhibits STAT3 phosphorylation, which inhibits GPX4 expression and induces the ferroptosis of HCC cells, eventually inhibiting their invasion and metastasis. These data suggest that polyphyllin VI may be a candidate for the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ensaios de Triagem em Larga Escala , Fator de Transcrição STAT3/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Apoptose
10.
Anal Chem ; 94(50): 17733-17738, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475636

RESUMO

As lipopolysaccharide (LPS) is closely associated with sepsis and other life-threatening conditions, the point-of-care (POC) detection of LPS is of significant importance to human health. In this work, we illustrate an electrochemical aptasensor for the POC detection of low-abundance LPS by utilizing boronate affinity (BA) as a simple, efficient, and cost-effective amplification strategy. Briefly, the BA-amplified electrochemical aptasensing of LPS involves the tethering of the aptamer receptors and the BA-mediated direct decoration of LPS with redox signal tags. As the polysaccharide chain of LPS contains hundreds of cis-diol sites, the covalent crosslinking between the phenylboronic acid group and cis-diol sites can be harnessed for the site-specific decoration of each LPS with hundreds of redox signal tags, thereby enabling amplified detection. As it involves only a single-step operation (∼15 min), the BA-mediated signal amplification holds the significant advantages of unrivaled simplicity, rapidness, and cost-effectiveness over the conventional nanomaterial- and enzyme-based strategies. The BA-amplified electrochemical aptasensor has been successfully applied to specifically detect LPS within 45 min, with a detection limit of 0.34 pg/mL. Moreover, the clinical utility has been validated based on LPS detection in complex serum samples. As a proof of concept, a portable device has been developed to showcase the potential applicability of the BA-amplified electrochemical LPS aptasensor in the POC testing. In view of its simplicity, rapidness, and cost-effectiveness, the BA-amplified electrochemical LPS aptasensor holds broad application prospects in the POC testing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoestruturas , Humanos , Lipopolissacarídeos , Técnicas Eletroquímicas , Limite de Detecção , Ouro
11.
Genomics ; 114(6): 110502, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220554

RESUMO

Most hepatocellular carcinomas (HCCs) are associated with hepatitis B virus infection (HBV) in China. Early detection of HCC can significantly improve prognosis but is not yet fully clinically feasible. This study aims to develop methods for detecting HCC and studying the carcinogenesis of HBV using plasma cell-free DNA (cfDNA) whole-genome sequencing (WGS) data. Low coverage WGS was performed for 452 participants, including healthy individuals, hepatitis B patients, cirrhosis patients, and HCC patients. Then the sequencing data were processed using various machine learning models based on cfDNA fragmentation profiles for cancer detection. Our best model achieved a sensitivity of 87.10% and a specificity of 88.37%, and it showed an increased sensitivity with higher BCLC stages of HCC. Overall, this study proves the potential of a non-invasive assay based on cfDNA fragmentation profiles for the detection and prognosis of HCC and provides preliminary data on the carcinogenic mechanism of HBV.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , China
12.
Anal Chem ; 94(39): 13516-13521, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36130914

RESUMO

Tumor biomarkers are of great value in the liquid biopsy of malignant tumors. In this work, a simple and cost-friendly electrochemical aptasensor was presented for the highly sensitive and selective detection of glycoprotein tumor biomarkers. The DNA aptamer-modified electrode was used as the sensing interface to specifically capture the target glycoprotein tumor biomarkers, to which the alkyl halide initiators for atom transfer radical polymerization (ATRP) were then attached via the esterification crosslinking between the boronic acid group and the cis-dihydroxyl sites of the conjugated oligosaccharide chains on glycoprotein tumor biomarkers followed by the growth of long-chain polymers through electrochemically controlled ATRP (eATRP) to efficiently recruit the ferrocene detection tags. As there are tens to hundreds of cis-dihydroxyl sites on a glycoprotein tumor biomarker for attaching ATRP initiators while each long-chain polymer can recruit hundreds to thousands of ferrocene detection tags, a significantly high current signal can be generated even in the presence of ultralow-abundance targets. Hence, the eATRP-based electrochemical aptasensor is capable of sensitively and selectively detecting glycoprotein tumor biomarkers. Using alpha-fetoprotein as the model target, the limit of detection was demonstrated to be 0.32 pg/mL. Moreover, the aptasensor has been successfully applied to detect glycoprotein tumor biomarkers in human serum samples. In view of its high sensitivity and selectivity, simple operation, and cost-friendliness, the eATRP-based electrochemical aptasensor shows great promise in the glycoprotein-based liquid biopsy of malignant tumors, even at the early stage of development.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Biomarcadores Tumorais , Ácidos Borônicos , DNA/genética , Técnicas Eletroquímicas , Compostos Ferrosos , Humanos , Limite de Detecção , Metalocenos , Polimerização , Polímeros , alfa-Fetoproteínas
13.
Anal Chem ; 94(37): 12860-12865, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070236

RESUMO

In view of their high efficiency and cost-effectiveness, polymers are of great promise as carriers for signal tags in amplified detection. Herein, we present a polysaccharide-amplified method for the electrochemical detection of a BRCA1 breast cancer gene-derived DNA target at the femtomolar levels. Briefly, peptide nucleic acid (PNA) with a complementary sequence was tethered as the capture probe for the DNA target, to which carboxyl group-containing polysaccharides were then attached via facile phosphate-Zr(IV)-carboxylate crosslinking, followed by the decoration of polysaccharide chains with electroactive ferrocene (Fc) signal tags via affinity coupling between a cis-diol site and phenylboronic acid (PBA) group. As the polysaccharide chain contains hundreds of cis-diol sites, boronate affinity can enable the site-specific decoration of each polysaccharide chain with hundreds of Fc signal tags, efficiently transducing each target capture event into the decoration of many Fc signal tags. As polysaccharides are cheap, renewable, ubiquitous, and biodegradable natural biopolymers, the use of polysaccharides for signal amplification offers the benefits of high efficiency, cost-effectiveness, excellent biocompatibility, and environmental friendliness. The linear range of the polysaccharide-amplified method for DNA detection was demonstrated to be from 10 fM to 10 nM (R2 = 0.996), with the detection limit as low as 2.9 fM. The results show that this method can also discriminate single base mismatch with satisfactory selectivity and can be applied to DNA detection in serum samples. In view of these merits, the polysaccharide-amplified PNA-based electrochemical method holds great promise in DNA detection with satisfactory sensitivity and selectivity.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos Peptídicos , Técnicas Biossensoriais/métodos , DNA/genética , Técnicas Eletroquímicas/métodos , Compostos Ferrosos , Limite de Detecção , Metalocenos , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/genética , Fosfatos , Polímeros , Polissacarídeos
14.
Anal Chem ; 94(28): 10206-10212, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793076

RESUMO

As a class of oligosaccharide chain-containing proteins, glycoproteins are of great value in screening and early diagnosis of malignant tumors and other major diseases. Herein, we report a universal boronate affinity-based electrochemical aptasensor for point-of-care glycoprotein detection. Aptasensing of glycoproteins involves the specific recognition and capture of target glycoproteins by end-tethered nucleic acid aptamers and the site-specific labeling of ferrocene tags via the phenylboronic acid (PBA)-based boronate affinity interactions because the cis-diol sites of oligosaccharide chains on glycoproteins can selectively react with the PBA receptor groups to form cyclic phenylborates in aqueous basic media. Due to the presence of hundreds to thousands of cis-diol sites on a glycoprotein, a large number of ferrocene tags can be recruited for the signal-on aptasensing of glycoproteins at a low-abundance level, eliminating the need for extra amplification strategies. As a result, the boronate affinity-based electrochemical aptasensor is highly sensitive and selective for glycoprotein detection and tolerant to the false-positive results. The detection limit for α-fetoprotein (AFP) is 0.037 ng/mL, with a linear response ranging from 0.1 to 100 ng/mL. In addition to the merits of simple operation, short assay time, and low detection cost, the aptasensor is applicable to the detection of glycoproteins in serum samples and the point-of-care detection using disposable flexible electrodes. Overall, this work provides a universal and promising platform for the point-of-care detection of glycoproteins, holding great potential in screening and early diagnosis of glycoprotein-related malignant tumors and other major diseases.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Glicoproteínas , Ouro , Limite de Detecção , Metalocenos , Sistemas Automatizados de Assistência Junto ao Leito
15.
Exp Ther Med ; 24(1): 456, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747157

RESUMO

Liver cancer is a highly lethal malignancy. Despite considerable efforts made in recent years, the prognosis of patients with liver cancer remains poor. Curcuma zedoaria (known as Ezhu in Chinese) is widely prescribed in traditional Chinese medicine. Germacrone (GM) is a sesquiterpene constituent derived from the essential oil of Ezhu, and exerts anti-carcinogenic effects by inducing apoptosis in various cancer cells. The present study investigated the potential mechanism of GM in HepG2 cells. Cell Counting Kit-8, colony-formation and lactate dehydrogenase-release assays, as well as cell death assays using flow cytometry, were performed to evaluate HepG2 cell proliferation following GM treatment. HepG2 cells were transfected with caspase-3 small interfering RNA and then treated with GM. Caspase-3 expression levels were determined by reverse transcription-quantitative PCR and western blotting. The present study showed that GM inhibited the growth of HepG2 cells and induced the proteolytic cleavage of caspase 3, with concomitant cleavage of gasdermin E (GSDME), by markedly increasing the production of reactive oxygen species (ROS). This led to caspase 3-dependent cleavage of GSDME, thereby promoting pyroptosis in HepG2 cells. However, these changes were rescued by ROS scavengers, such as N-acetylcysteine. Furthermore, GM inhibited tumor growth by promoting the cleavage of caspase 3 and GSDME in HepG2 cell xenograft models. These results indicated that GM induced GSDME-dependent pyroptosis through caspase 3 activation, at least in part, by damaging the mitochondria and enhancing ROS production, thereby supporting the possible development of GM as a candidate for the prevention and treatment of liver cancer.

16.
Exp Ther Med ; 22(6): 1467, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737807

RESUMO

Circular RNAs (circRNAs) are differentially expressed in various cancer types. The present study aimed to investigate the expression and clinical implication of circRNAs in hepatocellular carcinoma (HCC) and to evaluate the potential of circRNAs as diagnostic biomarkers for HCC. CircRNA expression was profiled in 19 patients with HCC and 19 normal controls using ribosomal RNA-depleted RNAs. Differentially expressed circRNAs (DE-circRNAs) between HCC and controls were identified using CIRI2 and distinct circRNA expression signatures were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to predict the potential functions of these DE-circRNAs and the circRNA-miRNA-mRNA regulatory networks were then constructed. Several DE-circRNAs were selected and confirmed by RT-qPCR. A total of 40 DE-circRNAs (27 upregulated and 13 downregulated) were identified between patients with HCC and controls. Functional annotation indicated that these DE-circRNAs were involved in cellular components, molecular functions and cancer-associated pathways related to HCC. These included pathways in cancer, TNF signaling pathway, hepatitis B, hepatitis C and hepatocyte differentiation. The circRNA-miRNA-mRNA regulatory network was generated based on 11 candidate circRNAs. Receiver operating characteristic curve analysis indicated that Homo sapiens (hsa)_circ_0073239, hsa_circ_007090, hsa_circ_0008304, hsa_circ_0017586, hsa_circ_0000369 and hsa_circ_0001181 may serve as potential biomarkers for HCC. Results from Cell Counting Kit-8 assay suggested that small interfering RNA targeting hsa_circ_0001181 reduced the proliferation of HepG2 cells, which implicated it as a potential therapeutic target for HCC. Therefore, in the present study, the differential expression pattern and important role of circRNAs in HCC were determined. The present results highlight the diagnostic potential of circRNAs in HCC and provide novel insight into the development of and treatment approaches for HCC.

17.
Sci Rep ; 11(1): 17797, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493740

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and has extremely high morbidity and mortality. Although many existing studies have focused on the identification of biomarkers, little information has been uncovered regarding the PBMC RNA profile of HCC. We attempted to create a profile throughout using expression of peripheral blood mononuclear cell (PBMC) RNA using RNA-seq technology and compared the transcriptome between HCC patients and healthy controls. Seventeen patients and 17 matched healthy controls were included in this study, and PBMC RNA was sequenced from all samples. Sequencing data were analyzed using bioinformatics tools, and quantitative reverse transcription PCR (qRT-PCR) was used for selected validation of DEGs. A total of 1,578 dysregulated genes were found in the PBMC samples, including 1,334 upregulated genes and 244 downregulated genes. GO enrichment and KEGG studies revealed that HCC is closely linked to differentially expressed genes (DEGs) implicated in the immune response. Expression of 6 selected genes (SELENBP1, SLC4A1, SLC26A8, HSPA8P4, CALM1, and RPL7p24) was confirmed by qRT-PCR, and higher sensitivity and specificity were obtained by ROC analysis of the 6 genes. CALM1 was found to gradually decrease as tumors enlarged. Nearly the opposite expression modes were obtained when compared to tumor sequencing data. Immune cell populations exhibited significant differences between HCC and controls. These findings suggest a potential biomarker for the diagnosis of HCC. This study provides new perspectives for liver cancer development and possible future successful clinical diagnosis.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Leucócitos Mononucleares/química , Neoplasias Hepáticas/sangue , RNA Neoplásico/sangue , RNA-Seq , Carcinoma Hepatocelular/genética , Primers do DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...